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Abstract-Coupled heat transfer between two laminar natural convection systems separated by a vertical 
conductive wall is theoretically analyzed, taking account of the two-dim~nsionai thermal conduction in 
the separating wall. Numerical solutions of temperature fields for both fluid Rows are combined with the 
analytical solution for the wall so as to satisfy the continuity of the temperature and the heat Aux at both 
sides of the conducting wall. Obtained results of the whole temperature field show that the axial conduction 
effect in the wall is substantial when the wall is thick and has a high thermal conductance, and that axial 
conduction in the wall is found to relax the interference between the two convections in both fluids. 
Experiments have been conducted for air-air systems with the conducting wall made of aluminum or giass. 
Theoretical predictions describe well the experimental temperature distributions, showing the validity of 

the present analysis. 

I. INTRODUCTION 

RECENT demands in heat transfer engineering have 
requested researchers to develop various new types of 
heat transfer equipments with superior performance, 
especially compact and light-weight ones. Increasing 
the need for small-size units, focuses have been cast 
on the effects of the interaction between developments 
of the thermal boundary layers in both fluid streams, 
and of axial wall conduction, which usually degrades 
the heat exchanger performance. 

Concerning the former effect, various types of 
conjugate heat transfer problems have been studied 
since the 1970s. They can be roughly classified into 
the following three groups from the viewpoint of 
accompanied flows: (A) two adjacent forced con- 
vections, (B) forced convection and external natural 
convection, and (C) two adjacent natural convections. 
In earlier investigations, the first type of problem had 
initially been solved because the flow was not greatly 
influenced by the heat transfer in the usual cases and 
the equations of motion and energy could be solved 
separately. However, problems including natural con- 
vection were later analyzed because of difficulties in 
solving the developments of flow and thermal bound- 
ary layer simuItaneousiy. 

On the coupled heat transfer between a forced con- 
vection and the ambient natural convection, Sparrow 
and Faghri [I] treated theoretically a case with an 
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upward forced flow in a vertical circular tube and 
the external natural convection induced in the same 
direction ; however, their analysis did not include the 
wall conduction effect at all. 

For two natural convection systems, Lock and 
Ko [2] studied a problem with a vertical wall of 
finite thickness. After they transformed fundamental 
equations by introducing a similarity variable, they 
obtained numerical results using a finite difference 
method. Although their analysis assumed that wall 
conduction is only in the transverse direction, they 
pointed out that the two-dimensional conduction 
equation should be employed because axial con- 
duction in the wall would play an important role in 
such a conjugate problem. Recently, more detailed 
discussions on the same problem were made by 
Anderson and Bejan [3] and Viskanta and Lankford 
[4]. In particular, the latter conducted interferometric 
experiments and confirmed the validity of their 
approximated theoretical analysis based on a super- 
position technique. They also suggested that further 
investigations are required for cases with the sig- 
nificant effect of axial wall conduction. More recently, 
research has been extended to geothermal problems 
[.5J, energy regenerators [6] and thermal isolation 171. 
In major research to date treating any of the above 
combinations, the wall, if included, is merely con- 
sidered as a partition without any thermal effect or 
with a thermal resistance only in the transverse direc- 
tion. 

With respect to the effect of axial wall conduction 
on the interaction between two forced convections, 
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NOMENCLATURE 

E( ) objective functions defined by X dimensionless coordinate, .x/H 
equation (22) or (23) x vertical coordinate fm] 

F( ). C( ) dimensionless interfacial Y dimensionless coordinate, y/H 
temperature 4 horizontal coordinate [m] 

Y gravitational acceleration [m s- ‘1 Y,v dimensionless coordinate, y,,,/fi 

Gr modified Grashof number, I’m, horizontal coordinate for the wall [ml. 

glj(T,, - Tz,,)H’Iv’ 
Gr, local Grashof number, Greek symbols 

gp( T,, - T, , ).x3/vz thermal diffusivity [m’ sm. ‘] 

H height of conducting wail [m] i; thermal expansion coefficient [K ‘1 

K dimensionless thermal conductivity of 6 thickness of conducting wall [m] 

wall, k,jk 0 dimensionless fluid temperature, 

k thermal conductivity [W m ’ K ‘1 (r-Tz,)/(T,. --Tz~) 
L* aspect ratio of wall, S/H 0, dimensionless wall temperature, 

NU local Nusselt number defined by (~,-TLL)/(T,,-T~,~) 
equation (24) V kinematic viscosity [m’ s ‘1 

P parameter defined by equation (26) Vi coefficient in power series, to be 

Pr Prandtl number, v/or determined 

T temperature [K] 5’ dummy variable 

u dimensionless velocity in the vertical ri coefficient in power series, to be 

direction, uH/v determined. 

u velocity component in the vertical 
direction [m s ‘1 Subscripts 

V dimensionless velocity in the horizontal w wall 

direction. cH/v 1 hot fluid (Fluid 1) 

c velocity component in the horizontal 2 cold fluid (Fluid 2) 

direction [m s- ‘] ‘X outside of boundary layer. 

a theoretical analysis was performed on a counter- 
current parallel-plate heat exchanger with laminar 
flows by Mori et al. [S]. They found that axial con- 
duction significantly relaxes the thermal interaction 
between the two convection systems. 

In the present paper, a theoreticai analysis on 
mounter-current natural convection systems with two- 
dimensional conduction in the separating finite wall 
is reported, following the above-mentioned sugges- 
tions by Lock and Ko [2] and Viskanta and Lankford 
[4]. Two numerical solutions for both natural con- 
vections and an analytical solution for the wall con- 

duction are combined to obtain the final solutions so 
as to fit the conjugate boundary conditions at both 
interfaces. Numerical results are shown for a system 
symmetrical with respect to the center of the con- 
ducting wall, and the results of the distributions of 
the interfacial temperature and the local Nusselt 
number are presented to show the significant wall 
conduction effect. Experimental temperature profiles 
obtained for air-air systems with an aluminum or a 
glass wall are compared with the theoretical pre- 
dictions in order to show the validity of the present 
analysis. 

2. THEORETiCAL ANALYSIS 

Consider two stagnant fluids separated by an infi- 
nite, vertical wall with a heat-conducting section of 

height N. Spaces extending at both sides of the wall are 
assumed to be sufficiently large so as to be regarded 
as semi-infinite. When the two fluids are at different 
temperatures, T, % and TZc7_, natural convection is 
induced downwards in hot fluid (Fluid 1) and 
upwards in cold fluid (Fluid 2). Such a situation is 
shown schematically in Fig. 1 with the coordinate 
systems used in the following analysis. 

The developments of the thermal and the hydro- 
dynamic boundary layers depend on the temperature 

Hot fluid Cold fluid 

(Fluid 1) (Fluid 2) 

Tt, 

FIG. 1. Analytical model. 
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at the wall-fluid interface. However, the interfacial 

temperature cannot be determined straightforwardly 
under any prescribed conditions and has to be deter- 
mined as a result of the conjugate heat transfer from 
the hot fluid to the cold fluid through the conducting 
wall. Consequently, we must solve the fundamental 
equations for two natural convection systems and the 
wall simultaneously. Since the problem is very com- 
plicated, the following simplifications are introduced : 

(i) Boussinesq and boundary layer approximations 
are applicable to both natural convections ; 

(ii) the axial conduction is negligible for both fluid 
streams ; 

(iii) all the physical properties are constant except 

for the density in the buoyancy term in the momentum 
equation ; 

(iv) the problem is two-dimensional and the steady 

state is attained. 

2.1. Fornndution 

To formulate the present problem, the dimen- 
sionless variables and the parameters are defined as 

X = .x/H, Y = y/H, Y,, = yJ6, U = uH/v. 

I’ = lifflv, 0 = (T- T,,)I(T,,, - Tz,,), 

0, = (T,, - T,, )l(T,, - T,,), 

Gr = ,@(T,, - Tz,)H’ 

v* 

L* = ;, Pr = v/a. 

Furthermore, to specify the quantities relating 
Fluid 1 and Fluid 2, subscripts 1 and 2 are used. 

to 

By using the above dimensionless groups, the prob- 
lem is represented by the following equations and 
conditions : 

For hot fluid (Fluid 1) 

au, - ,,+g=o (1) 
I I 

a2u, u,s+ V,$Gr,(I-O,)++ at-f (2) 
I I 

ao, ao, I alo, 
“‘c;x,+V’ar,=~dY: (3) 

with boundary conditions 

at X, = 0, u,=o, O,=l (4) 

at Y, = 0, u, =o, v, = 0, 0, = F(X,) (5) 

at Y, = co, u, = 0, 0, = 1. (6) 

For cold fluid (Fluid 2) 

au2 av2 
=+ar,=O (7) 

au, au, azu, 
~2~+V23j~2==~‘2@2+~ (8) 

u2!!$v2!+LL~ (9) 
2 2 

with boundary conditions 

at X2 = 0, u2 =o, o* =o (IO) 

at Y, =O, U2 =O, Vz =O, 0, = G(X,) (11) 

at YZ = w, u, = 0, o2 = 0. (12) 

For the wall 

2, L*2d2!?+-,=0 a20 
ax: ar: (13) 

with boundary conditions 

at X, = 0 and 1, &/ax, = 0 (14) 

at Y,, = 0, 0, = F(X,) (15) 

at Y, = I, 0, = G(X,). (16) 

The conjugate boundary conditions at the interface 
are 

at Y, = 0 (or Y, = 0), 

ao, K, c?@, 

a Y, L* ay, 

at Y, = 1 (or Y, = 0), 

K, ao, ao, 
L* au, ay, 

(17) 

(18) 

In the foregoing equations (5), (1 l), (15) and (16), the 
unknown interfacial temperatures on the hot and cold 
fluid sides are conveniently expressed by F(X,) and 

G(X,), respectively. 

2.2. Solution procedure 

Such boundary layer equations as mentioned above 
are often analyzed by introducing similarity variables. 
However, the similarity solution is successfully 
obtained only in the case with a boundary condition 
of constant temperature or constant heat flux at the 
fluid-wall interface. Furthermore, the superposition 
of solutions for some simplified problems is not 
adequate for the present case because of the non- 
linearity of the fundamental partial differential equa- 
tions. Usually, an analysis of the problem under the 
boundary condition with a change in wall temperature 
or heat flux is performed by the local nonsimilarity 
solution [9], but this method would be too com- 

plicated to apply directly to the present multi-region 
problem. Therefore, the boundary layer equations 
for each of the fluids were solved numerically in the 
present work by applying the finite difference 
method [lo]. 

As determination of the interfacial temperatures is 
not easy to satisfy the continuities of temperature and 
heat flux at each interface, the interfacial temperatures 
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to be determined are expanded to the following power 
series of X, or X2 with unknown coefficients 

F(X,) = ,+v,+ i: v,x;, (19) 
,= I 

G(XJ = r,+ 1 T,X;. (20) 
i- I 

If the coefficients v, and t, are specified, the set of 

finite difference equations will be solved by iterative 
calculation for each fluid independently. 

On the other hand, the heat conduction equation 
in the wall, equation (13). is solved analytically for 
prescribed interfacial temperature distributions as fol- 
lows [8] : 

0, = (I- Y,) 
S’ 

F(S) & + Y, 
S’ 

G(I -t)d[ 
0 0 

I 2(nnX!) 
i-2 ,,c, sinh (nzL*) 

sinh {nnL*( 1 _ yw)} 

X s’ F(t) cos (nn[) dt+ sinh (nrrL* Y,) 
0 

X 

S' 
G(l-<)cos(nn<)dt 

> 
(21) 

0 

Coupling the solutions for all the regions obtained 
in the ways mentioned above is carried out by the 
following procedure. First, the unknown coefficients, 
v, and r,, are assumed roughly. Then the two sets of 
finite difference equations for both boundary layer 
flows are calculated independently. The wall tem- 
perature is then estimated from equation (21). Next, 
the dimensionless heat fluxes calculated from the 
obtained temperature distributions for three regions 
are substituted into the following objective functions, 
which are defined on the basis of the conjugate bound- 
ary conditions, equations (17) and (18) : 

= (22) 

In order to minimize the objective functions 

E, (~0, v,, .) and E,(z,, T,, .), the assumed values 
of the coefficients v, and r, are systematically adjusted 
by applying the simplex method. After the values of 
the coefficients have converged, the temperature fields 
in both fluids and the wall are established. The local 
Nusselt number, based on the temperature field 
obtained for the hot fluid side, is estimated by the 
following definition : 

(24) 

In the present calculations, equations (19) and (20) 
were truncated at the term of X: or X2. For each of 
the objective functions, the errors in the trial were 
evaluated at nine points, that is, at X, or X1 = O.l- 

0.9 at intervals of 0.1. The iteration was repeated till 
both E, and El became less than a few percent of the 
dimensionless interfacial heat flux. To calculate the 
flow and the temperature fields, the initial value at 
every grid point was given by the analytical solution 
presented by Sparrow [I I]. The increments in the X 
and Y directions for the finite difference equations 
were 0.05 and 0.0025, respectively. The convergence 
criterion was set to be 10 ’ in the maximum difference 
between the results of the nth and (n+ I)th trials for 
all the grid points. With these increments and the 
convergence criterion, a model problem with the con- 

dition of constant wall temperature was solved and 
the result was confirmed to give good agreement with 
the well-known similarity solution except in a region 

very close to the leading edge. 
In addition, in the case where the axial wall con- 

duction is neglected, the conjugate boundary con- 
dition at the interfaces is given by the following in 
dimensionless form : 

= 1 ((o,),,=,-(o,),:~,,) 
L* 

(25) 

In this case also, numerical calculations can be made 
in a similar manner as mentioned above. 

3. NUMERICAL RESULTS AND DISCUSSION 

When a system of interest consists of two different 
kinds of fluids, there are many parameters to describe 
the effect of each fluid on heat transfer characteristics. 
Therefore, in the present report, a case where two 
working fluids have the same physical properties is 
examined in detail. In this case, the temperature fields 
become completely symmetrical with respect to the 
center point of the conducting wall. Accordingly, the 
heat transfer characteristics will be examined and dis- 
cussed mainly for the hot fluid side. 

Conditions prescribed for numerical calculations 
are as follows: Pr(= Pr, = PrJ = 0.7, IO’ < Gr 

(= Gr, = GrJ < lo”, I < K(= K, = K2) < 1000, 
0.001 d L* < 0.5. 

Initially, to confirm the validity of the procedure 
for numerical calculations, the interfacial temperature 
for the case where the axial wall conduction is neg- 
ligible is estimated by using the conjugate boundary 
condition. equation (25), and is compared with the 
result of Viskanta and Lankford. In their study, the 
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Xl 

FIG. 2. Comparison of numerical results with those of 
Viskanta: interfacial temperature on the hot fluid side 

(Pr = 0.7, Gr = IO’, L* = 0.1). 

following dimensionless parameter was employed to 

represent the heat transfer characteristics : 

L* 
P= -(GrPr)‘*4. 

K (26) 

Numerical calculations are carried out for P = 0.1, 
1.0 and 10 by changing the value of K under the 
conditions of Pr = 0.7, Gr = 10’ and L* = 0.1. Figure 
2 compares the obtained interfacial temperatures on 
the hot fluid side and their solutions represented by 
broken lines. Despite a slight deviation for P = 1, on 
the whole both results agree well, showing the validity 
of the present numerical analysis. 

The dependence of the interfacial temperature and 
the local Nusselt number on the parameter K are 
shown in Fig. 3. The other parameters are fixed as 

j:!Yz!jsg --- const. heat flux 
0.3 - at interface 

---- const. temperature 
at interface 

1 

1 
0 0.5 1.0 

XI 

I 

0.1 005 0 

K YW 

FIG. 3. lnterfacial temperature and local Nusselt number on FIG. 4. Temperature profile in the hot Ruid and the wall 
the hot fluid side (Pr = 0.7, Gr = IO’, L* = 0.1). (Pr = 0.7, Gr = IO’, K= 1000, L* = 0.1). 

Pr = 0.7, Gr = 10’ and L* = 0.1. The broken curves 
in the upper graph are the result for the one-dimen- 
sional analysis without axial wall conduction. In the 

lower graph, the local Nusselt numbers under the 
conditions of constant wall temperature and constant 
wall heat flux are also shown for reference. The local 
Nusselt numbers for K = l-100 obtained by the one- 
dimensional analysis were in agreement with those for 
the exact results, and that for K = 1000 almost agreed 
with the exact case for K = 100. 

The comparison of the interfacial temperature by 
the present method with that obtained by the one- 
dimensional analysis shows that the axial wall con- 
duction has a significant effect on the interfacial tem- 
perature when K is large and that the assumption of 
wall conduction only in the transverse direction holds 
in cases for a comparatively small value of K. In the 
upper graph, the interfacial temperature curve shows 
a sigmoid change with an increase in X, for K = 100. 
However, for K = 1, the change becomes rather mod- 
erate, and for K = 1000 the curve is linear, flat and 
close to 0.5. In the lower graph, the local Nusselt 
number for K = 100 is the highest, especially in the 
large X, region. However, for K = 1000, the local 
Nusselt number decreases in the whole region, and is 
close to the curve for the case with the constant wall 
temperature. On the other hand, the curve for K = 1 
is close to that for the case with the constant wall heat 
flux. For K = 10000, though numerical results were 
not obtained because of poor convergence, the wall 
temperature will uniformly approach 0.5 and conse- 
quently the local Nusselt number will become much 
closer to that of the constant wall temperature case. 

To clarify the effect of axial wall conduction, the 
tempcraturc profile in the hot fluid and the conducting 
wall is shown in Fig. 4 for the case at K = 1000 and 
compared with that calculated for the one-dimen- 
sional case. A significant difference between these 
results appears in the wall and in the vicinity of the 
wall at X, = 0.1 and 0.9. The discrepancies in the 
temperature gradient in the neighborhood of the lead- 
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ing edge and the trailing edge are attributed to the 
substantial interaction between two natural con- 
vections. 

The above behaviors of the interfacial tem~rature, 
the local Nusselt number and the temperature profile 
in Figs. 3 and 4 can be explained on the whole as 
follows. At K = 100, the interfacial temperature is 
almost 0.5 at about X, = 0.5 and nearly equal to that 
on the other side. This means that the wall resistance 
is negligibly small, and that the uneven conductance 
distribution caused by the developments of the ther- 
mal and the hy~~rodynamic boundary layers in the 
vicinity of the conducting wall aff‘ects almost directly 
the boundary layer development in the opposite direc- 
tion in the fluid on the other side. Thus the results for 
K = 100 show the most clear interaction between both 
sides’ natural convections. At K = 1000, the thermal 
resistance in the transverse direction is extremely 
small; consequently. axial conduction in the wall 
becomes significant to relax the unevenness of the wall 
temperature. At K = 1, the wall resistance pre- 
dominates over the overall heat transfer rate and the 
unevenness of the convective conductance in both 
fluids loses its si~nifi~nce in the whole heat transfer 
process. Therefore, the wall conduction in the trans- 
verse direction becomes most important, compared to 
that in the longitudinal direction. Thus the situation 
approaches the problem with the constant wall heat 
flux. 

The dependences of the interfacial temperature and 
the local Nusselt number on the parameter L* are 
shown in Fig. 5 for Pr = 0.7. Gr = IO7 and K = IO. 

FIG. 5. Interfacial temperature on both fluid sides and local 
Nusselt number on the hot fluid side (Pr = 0.7, Gr = lo’, 

K = 10). 

The broken curve in the upper graph is the interfacial 
temperature on the cold fluid side. In the lower graph 
of the local Nusselt number, the results for the cases 
of the constant wall temperature and the constant wall 
heat flux are also shown. 

In general, the effect of the parameter L* on the 
heat transfer is similar to that of K. ConcerIl~~lg the 
local Nusselt number, such a tendency can bc 
observed, that is, an increase in L* stems to cor- 
respond to an increase in K, and the curve becomes 
largest at about L* = 0.1. However, the interfacial 
tc~~~erature of the hot fluid is high in the full range 
of X, for a large value of L* and different from the 
effect of K, and the curve changes its shape from 
sigmoid to linear. When L* is specified at any fixed 
X,, the difference between 0 = I and the solid line 
curve corresponds roughly to the thermal resistance 
in the transverse direction of the hot fluid side con- 
vection; the difference between the solid and the 
broken line curves to that of wall conduction ; and the 
differcncc between the broken line curve and 0 = 0 
to the cold fluid side convection. Therefore. from the 
graph we can easily understand that wall conduction 
can be neglected for L* < 0.01 because both side inter- 
facial temperatures agree with each other. This result 
means that the interaction between two natural con- 
vections becomes significant. For an extremely large 
value of I!,*, such as L* = 0.5, the interfacial tem- 
perature has a linear distribution along X, ; however, 
its inclination does not become so small as in the case 
with K = 1000 shown in Fig. 3. This implies that the 
local Nusselt number does not approach the curve for 
the case with the constant wall temperature. even for 
a large value of L*. 

Finally an example of results in the high Grashof 
number region is given in Fig. 6 for Gr = IOx, where 
the values of the other parameters are specified as the 
same as in Fig. 5. The difference of the graph from 
Fig. 5 in the interfacial temperature is that the effect 
of L* becomes more substantial and even at L* = 0.5 
the shape of the curve still remains sigmoid, as well as 
the other curves for smaller values of L*. In contrast 
with the interfacial temperature, the local Nusselt 
number is less affected by L*. For all the values of 
L*, the obtained distributions have almost the same 
concave curve except for the variations in the large 
X, region and indicate equally the interaction effect 
between two natural convections. 

4. EXPERIMENTAL 

The experimental apparatus employed was similar 
to that reported by Viskanta and Lankford. The 
apparatus consists of two copper boxes, and the two 
sides are made of acrylic resin. The dimensions of 
these boxes are 95 cm height, 43 cm width and 48 cm 
depth. Each box was covered with a jacket made of 
an acrylic resin plate. The two boxes were coupled 
with a 20 mm thick separating board. The board was 
composed of a core of plywood board 12 mm thick 
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0 0.5 1.0 

X1 

FIG. 6. Interfacial temperature on both fluid sides and local 
Nusselt number on the hot fluid side (Pr = 0.7, Gr = IO’, 

K = IO). 

and a covering plate of 4 mm thick balsa on both 

sides. Air was used as both working fluids. A con- 
ducting wall 20 cm square and 20 mm thick was placed 
at the center of the separating board. As materials of 
the conducting wall, two representative ones with high 
and low thermal conductivities were used : aluminum 
alloy and Pyrex glass. To maintain the stagnant air in 

each enclosed space at a different specified tempera- 
ture, water was circulated to the jacket through a 
constant temperature bath. The outside of the appar- 
atus was completely covered with foamed polystyrene 
to avoid thermal interference from the surroundings. 

After the steady state was attained, the surface tem- 
perature of the conducting wall was measured by C- 
C thermocouples of 0.1 mm diameter attached on each 
side surface at five points at intervals of 40 mm. The 
temperature profiles in two natural convections were 
also measured by a CX thermocouple of 0.1 mm 
diamctcr which was tightly stretched between two 
points of a Y-shaped, thin glass probe. The probe was 
mounted on a micrometer traverser and a vernier 
caliper to accomplish accurate positioning. All tem- 
perature measurements were performed along the ver- 
tical center line of the conducting wall to minimize the 
influence of the side wall. 

The air temperature in one side box was maintained 
at about room temperature and the other was specified 
about IO or 15-C higher or lower than it. 

Typical experimental temperature profiles in the 
transverse direction are shown in Figs. 7 and 8 for 
the aluminum and glass test walls, respectively. In 
comparison to the experimental data, theoretical pre- 

I.1 

s 
03 0. 

6 ----One-dimensional 

- Twodimensional 

0.1 0 1.0 

(0) 0.1 

Yl YW y2 

FE. 7. Temperature profile in fluids and wall (aluminum 
Wall; Pr = 0.71, Gr = 1.05 x IO’, K = 4600, L* = 0.100. 

T,, = 302.7 K, T2, = 292.5 K). 

dictions are also given in these figures, calculated not 

only by the exact analysis but also by the one-dimen- 
sional one as in Viskanta’s analysis. The former theor- 
etical result is indicated by a solid line and the latter 
by a broken line. 

From Fig. 7 for the aluminum wall. we can observe 

that the experimental wall temperature does not 
change in either the transverse or axial direction and 
is almost constant. Such a situation is simulated fairly 
well by the theoretical prediction with the exact wall 
condition, compared with that calculated for the one- 
dimensional case. This is because axial conduction in 
the aluminum wall with the high thermal conductivity 
plays an important role in flattening out the tem- 
perature variation induced by the developing bound- 
ary layer. On the other hand, in Fig. 8 for the glass 
wall, both theoretical curves agree very well, showing 
the validity of the one-dimensional analysis. The exact 

1.0 

n 

q 

0.5 ,- 

6 

0 

---Onedimensional 

- Two-dimensi onol 

FIG. 8. Temperature profile in fluids and wall (Pyrex glass 
wall; Pr = 0.71, Gr = 1.09x IO’. K = 42.0, L* = 0.100, 

T, )r, = 291.6 K, Tz, = 282.5 K). 
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theoretical prediction is in good agreement with the 
experimental data, as well as in the case with the 
aluminum wall. 

On the whole, the usefulness and validity of the 
present analysis was verified through the fact that 
the theoretical prediction of the temperature profile 
agreed well with the experimental data. However, the 
following two points were noticed in every exper- 
imental result. First, the experimental data tended to 
deviate a little from the exactly predicted curve in the 

region far from the conducting wall in both graphs. 
This would be caused by recirculation flow induced 

slightly in the test chamber due to its finiteness. 
Second, the wall temperature obtained by the cxper- 
iments always changed less in the axial direction, even 

in comparison with the exact prediction. This 

phenomenon might be brought about by the effect of 
the wooden separating wall in which the conducting 
test wall was installed. Although the thermal con- 
ductivity of the wooden wall is smaller than that of the 
test plate, its total surface area would be considerably 

larger. Thus the wooden wall might promote the 
behavior of the conducting wall to ease the local tem- 
perature change caused by the developing boundary 
layer in the vicinities of the conducting wall surfaces. 

5. CONCLUSION 

A conjugate problem of heat transfer between two 
laminar natural convections and a finite vertical wall 
separating them was analyzed theoretically by com- 
bining the two numerical solutions for the convections 
and the analytical one for the wall, in which the ther- 
mal conduction in the wall was taken into account in 

not only the transverse but also the axial directions. 
Numerical calculations were performed for a case 

where the same fluid was employed as both working 
fluids, and the temperature fields and the local Nusselt 
number were obtained. The results showed that the 
ratio of thermal conductivities of the wall and the fluid 
and the dimensionless thickness of the conducting 
wall influence substantially the interactive heat trans- 
fer between two natural convections induced counter- 
currently on both sides of the wall. The wall behaves 
as a buffer for the thermal interaction between the 
developing boundary layers. Consequently, when the 
thermal conductivity is high and/or the wall is very 

thick, the thermal interaction between two natural 

convections is relaxed and the interfacial temperature 
tends to have a flat distribution along the wall, where 
the axial wall conduction plays an important role. In 
such a case, the treatment simplified as the constant 
wall temperature became valid. 

Experiments were also carried out for air-air sys- 
tems with conducting walls of aluminum and glass. 
The observed temperature profiles agreed fairly well 
with the theoretical predictions calculated by the 

present analysis. 
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DEUX CONVECTIONS NATURELLES 
SEPAREES PAR UNE PLAQUE VERTICALE 

Rbum&Le couplage thermique entre deux convections naturelles laminaires separtes par une paroi 
verticale conductive est ttudiee theoriquement en prenant en compte la conduction thermique bi- 
dimensionelle dans la paroi de separation. Des solutions numeriques des champs de temperature dans lcs 
deux fluides sont combintes avec la solution analytique pour la paroi, de facon a satisfaire la continuitt 
de la temperature et du flux thermique des deux cot& de la paroi conductrice. Les rtsultats obtenus sur le 
champ entier de temperature montrent que I’effet de conduction longitudinale dans la paroi est important 
quand la paroi est epaissc ou avec une conductance thermique &levee; cette conduction longitudinale relaxe 
I’interference entre les deux convections. Des experiences sont conduites pour des systemes air-air avec une 
paroi en aluminium ou en verre. Les predictions theoriques decrivent bien les distributions de temperature 

experimentales et elles montrent la validitt de la prtsente analyse. 
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KONJUGIERTER WARMETRANSPORT ZWISCHEN ZWEI DURCH EINE 
SENKRECHTE PLATTE GETRENNTEN NATURLICHEN KONVEKTIONSSTROMUNGEN 

Zusammenfassung-Es wird der gekoppelte Wirmetransport zwischen zwei Systemen mit laminarer natiir- 
lither Konvektion theoretisch untersucht, die durch eine wirmeleitende senkrechte Platte getrennt sind. 
Dabei wird der zweidimensionale Wlrmetransport in der Platte beriicksichtigt. Urn die Kontinuitat von 
Temperatur und Warmestromdichte beiderseits der leitenden Wand zu befriedigen, werden die numerischen 
Losungen fiir die Temperaturfelder in den beiden Fluiden mit der analytischen Liisung fiir die Platte 
kombiniert. Die berechneten Temperaturfelder zeigen, daI3 die axiale Warmeleitung in der Platte signifikant 
wird, wenn die Platte dick ist und eine hohe Warmeleitfahigkeit aufweist. AuBerdem zeigt sich, daB 
die axiale Warmeleitung die gegenseitige BeeinfluRung der beiden Konvektionsstromungen vermindert. 
Experimente wurden fiir Luft/Luft-Systeme und Aluminium oder Glas als Trennflache durchgefiihrt. Die 
theoretischen Berechnungen kiinnen die experimentell ermittelten Temperaturverliufe sehr gut vorhersagen 

und somit die Richtigkeit der durchgefiihrten Untersuchungen belegen. 

COHPRXEHHbIfi TEHJIOHEPEHOC MEXAY ABYMX 
ECTECTBEHHOKOHBEKTkiBHbIMH CHCTEMAMW, PA3AEnEHHbIMH BEPTMKAJIbHOR 

HJIACTMHOR 

AwoTaqn+fIpoBonarcn reopermtecroil arranu3 coaMecrnor0 rennonepenoca h4emgy ~BYMK aicTe- 

MaMU JIaMBHapHOti eCTeCTBeHHOk KOHBeKUAA, pa3neJIeHHbIMki BepTHKanbHOii npOBOneule6 CTeHKOir Up,% 

y’IeTe nByMepHOii TeIlnOIlpOBO~HOCTA B Hek ,@a LZOCTEi~eHWl IIOCTOIIHCTBP TCMIlepaTypbI U TeIlnOBOrO 

nOTOKa Ha o6eax CTOpOHaX CTeHKB ‘IHCJIeHHbIe peUleHlin TeMIIepaTypHbIX tI0nei-i LLWl 06oax IIOTOKOB 

X@UIKOCTefi COSeTaIOTCII C aHa.lTHTW,eCKBM peI”eHHeM Llnll CTeHKB. nOny7eHHbIe pe3ynbTaTbI an,, BCerO 

TeMnepaTypHOrO IIOnlI nOKa3bIBalOT, 9TO 3@@KT OCeBOii npOBOnAMOCTA B CTeHKe IIBnReTCII CyUCCTBeH- 

HbIM H BblCOKAM B Cny’fae TOnCTOfi CTCHKA, H ‘ST0 OH TaKme ocna6nae-r B3aliMOneIeiiCTBHe Memay nByM,, 

KOHBCKlUUlMM B o6eux XWnKOCTIIX. npOBeneHb1 3KCnCpHMeHTbI nnll CIiCTeM B03nyX-B03nyX C ItpOBOnFi- 

“,ei CTCHKOii, BbIIIOnHeHHOfi 83 BnEOMAHAII Unll CTeKJIa. TeopeTsrecKse paC’IeTb1 XOpOlrrO OnHCbIBa,OT 

3KcnepHMeHTanbHbre pacnpeneneakin TeMnepaTypbI, ST0 noKa3brBaeT cnpaBennaBocTb HacTonuero 

aHami3a. 


